生物理论
当前位置 :首页生物工程生物理论

细胞生物学教程(1.3)

来源: 作者: 时间:2010-05-15 点击:

第一章 历史与展望

第三节 对未来的展望


这个时代的脚步之快,令人惊叹!20世纪50年代人们还搞不清楚自己的染色体是多少条,但到了2000年“人类基因组计划[4]”工作草图完成,标志着以研究基因功能为主的后基因组时代到来。随后蛋白质组学(proteomics),RNA组学(RNomics),糖组学(glycomics)、代谢组学(metabolomics)等各种“组学”研究相继登场。可以预见在不远的将来,生物科学会将人类社会带入一个新的发展阶段。

人类经历了漫长的采猎文明后,约在一万年前进入农业经济时代,18世纪60年代,英国率先进入工业经济,20世纪50美国最早走完工业经济的历程,进入信息时代。据专家估计这一经济形态的“寿命”为75~80年,到本世纪20年代将渐渐失去活力,届时人类迎接下一个经济时代,即生物经济时代的到来,生物经济的资源为基因,其核心技术为建立在细胞与分子生物学理论基础上的各类生物技术。

生物经济时代具有以下特点:

一、推动产业革命,创造新的经济生长点。生物产业的比重将逐步提高,目前药品中有15%基于生物技术,这一数字据估计到2010年会增加到40 %。生物芯片[5](图1-4)已广泛应用于科研、医疗、农业、食品、环境保护、司法鉴定等领域,将会成为与微电子芯片一样重要的产业。转基因动植物的市场前景广阔,2004 年全球转基因作物的种植面积已经达到8100万公顷。

二、推动医学革命,延长人类寿命。20世纪初人类平均寿命约为40多岁左右,抗生素和疫苗的应用、医疗技术的提高和公共卫生观念的提出使人类摆脱了传染病的威胁,人类平均寿命逐渐提高,20世纪末人类平均寿命达到70多岁。但是心血管病、癌症和各类遗传病或遗传相关的疾病仍然是威胁人类健康的主凶。21世纪生物技术将推动新一轮医学革命,从疾病预防、疾病诊断、药物研制、组织工程、基因治疗、器官移植、抗衰老等方面,延长人类寿命。1990 美国国立卫生研究院(NIH)进行了世界首例基因治疗,给一名患有先天性重度联合免疫缺陷病的4岁女孩实施了基因治疗。这种疾病是因为缺乏正常的腺苷脱氨酶(ADA)基因而引起的。专家们以病毒作为载体,将ADA基因导入从患者血液中分离出来的淋巴细胞,在体外培养后再输回病人体内,使这位女孩体内ADA酶的含量升高,免疫功能有所恢复,能正常活动而无副作用。这是世界首例基因治疗成功的病人,在此之后,全世界掀起基因治疗的热潮。

三、推动绿色革命,解决食品危机。20世纪60年代以来,杂交玉米、杂交小麦和杂交水稻等农作物优质品种的栽培,标志着传统植物育种理论和各种农业措施在作物改良中的应用达到了高峰,对农业产生了深远的影响,被誉为第一次绿色革命。而二十一世纪转基因动植物、组织培养、胚胎移植、动物克隆等一系列新技术将再一次改变农业的面貌,新技术群将更有利于人们创造新品种、生产人类所急需的粮食、药物和工业用品,推动第二次绿色革命。

四、创造生物新品种,改善生态环境。植物抗旱、抗盐基因的发现与应用,将有可能彻底改变10亿亩干旱地区的生态环境,使5亿亩不毛之地、盐碱地变为良田。用于废气、废水、废渣处理的基因工程极端微生物的应用,可降解生物塑料产品的产业化推广,将会解决工业排放、白色垃圾等环保难题,有效改善生态环境。

五、发展绿色能源,解决能源危机。煤、石油等化石能源的枯竭指日可待,替代能源的开发具有十分重要的战略意义。全球生物质能的储量为18000亿吨,相当于640亿吨石油。生物能源将会使作物秸秆等废弃的有机物成为能源,缓解化石能源不足的危机,为石油短缺国家解决能源危机问题找到一个较为经济的途径。利用“绿金”代替“黑金”,开发生物乙醇、生物柴油、生物发电、生物氢等替代部分化石能源,已经成为许多国家的能源战略。除此之外,植物光合作用机理研究取得重大突破,人工光解水产生的氢气将成为继化石燃料之后主要的能源。

六、生物安全关系到国家安全。必须认识到生物技术是一柄双刃剑,生物工程武器将彻底改变传统战争的方式与后果,没有对生物战剂、生物恐怖和外来入侵物种的防御与应对能力,就不能从根本上保障国家安全。

七、是冲击传统伦理观念。转基因动植物、动物克隆、胚胎干细胞、组织工程、器官移植技术的应用,将对人传统伦理观念产生强烈冲击。

可以预见,在未来的时代细胞生物学仍然是生命科学的领头学科,是支撑生物技术发展的基础科学。尽管发现细胞已经300多年了,但人类目前对细胞在整体层次上(哪怕是“简单的”细菌)的工作机理并未获得一个完整清晰的认识。细胞生物学在如下领域内的发现将为生物技术带来新的发展动力。①对干细胞生长和分化的控制机制的认识或许会带来治疗应用方面的重大突破;②对遗传基因和生化途径调控机制的认识将催生更先进的遗传修饰方法;③理解细胞感知环境的机理会有助于研发具有广泛应用前景的生物传感器;④了解细胞骨架和分子马达的协同工作机制将很可能在下半个世纪中引领纳米技术的生物应用。



图1-4 DNA芯片



[4]人类基因组计划(Human genome project)由美国于1987年启动,我国于1993年加入该计划,承担其中1%的任务,即人类3号染色体短臂上约30Mb的测序任务。2000年6月28日人类基因组工作草图完成。由于人类基因测序和基因专利可能会带来巨大的商业价值,各国政府和一些企业都在积极地投入该项研究,如1997年AMGE公司转让了一个与中枢神经疾病有关的基因而获利3.92亿美元。

[5]生物芯片技术是通过缩微技术,根据分子间特异性地相互作用的原理,将生命科学领域中不连续的分析过程集成于硅芯片或玻璃芯片表面的微型生物化学分析系统,以实现对细胞、蛋白质、基因及其它生物组分的准确、快速、大信息量的检测。按照芯片上固化的生物材料的不同,可以将生物芯片划分为基因芯片、蛋白质芯片、细胞芯片和组织芯片。目前,最成功的生物芯片形式是以基因序列为分析对象的“微阵列(microarray)”,也被称为基因芯片(Gene chip)或DNA芯片(DNA chip)。1998年6月美国宣布正式启动基因芯片计划,联合私人投资机构投入了20亿美元以上的研究经费。世界各国也开始加大投入,以基因芯片为核心的相关产业正在全球崛起,目前美国已有8家生物芯片公司股票上市,平均每年股票上涨75%,据统计全球目前生物芯片工业产值为10亿美元左右,预计今后5年之内,生物芯片的市场销售可达到200亿美元以上。
 

最新评论共有 位网友发表了评论
发表评论
用户名: 密码: 游客发言不需要密码